If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2=1800
We move all terms to the left:
2w^2-(1800)=0
a = 2; b = 0; c = -1800;
Δ = b2-4ac
Δ = 02-4·2·(-1800)
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-120}{2*2}=\frac{-120}{4} =-30 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+120}{2*2}=\frac{120}{4} =30 $
| 4x/3-7=7 | | 3x+x+x+60=180 | | 62=17+5h | | 16z+15=13z | | 10(u+2)=70 | | w+22/10=5 | | 0.55x=90 | | 3=23-4q | | 8=10-2s | | 10=2+4y | | -8=4(6-k) | | 21x-9=3x=27 | | 10=2=4y | | x-9-5=31 | | -15-4x=3 | | -45=x/3 | | 13=f/3+9 | | -14=a÷4 | | 3x+9x-6=42 | | 3(a+9)=4(a+8) | | t−2=0 | | (3)/(2)a-26=-5 | | X+3x+3x=180 | | 25+c=10 | | 68-(5x)=x | | i=13/10(6)+15/103/10(6)+15/10 | | 380=20p | | 5x(4x+6)+113+90=540 | | 14u=336 | | 3k+3=33+2k | | q+287=945 | | (y/3)-(y/4)=48 |